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Abstract
Recent developments in pre-trained neural language
modeling have led to leaps in accuracy on common-
sense question-answering benchmarks. However, there
is increasing concern that models overfit to specific
tasks, without learning to utilize external knowledge or
perform general semantic reasoning. In contrast, zero-
shot evaluations have shown promise as a more robust
measure of a model’s general reasoning abilities. In this
paper, we propose a novel neuro-symbolic framework
for zero-shot question answering across commonsense
tasks. Guided by a set of hypotheses, the framework
studies how to transform various pre-existing knowl-
edge resources into a form that is most effective for pre-
training models. We vary the set of language models,
training regimes, knowledge sources, and data genera-
tion strategies, and measure their impact across tasks.
Extending on prior work, we devise and compare four
constrained distractor-sampling strategies. We provide
empirical results across five commonsense question-
answering tasks with data generated from five external
knowledge resources. We show that, while an individ-
ual knowledge graph is better suited for specific tasks, a
global knowledge graph brings consistent gains across
different tasks. In addition, both preserving the structure
of the task as well as generating fair and informative
questions help language models learn more effectively.

Introduction
Common sense is key to efficient communication in every-
day situations, as it enables natural language understand-
ing through contextual reasoning. Machine question answer-
ing (QA) benchmarks, like SocialIQA (Sap et al. 2019b)
and PhysicalIQA (Bisk et al. 2020), are effective be-
havioral tests of commonsense reasoning in machines, each
focusing on different capabilities. Answering a question in
SocialIQA might require the knowledge that readers typ-
ically prefer heroes over villains in fantasy novels; whereas,
in PhysicalIQA, the knowledge that metal stools can
break windows, because windows are made of glass and
metal is a more enduring material than glass. Although such
tasks had been traditionally difficult for machines, recent de-
velopments in pre-trained neural language modeling have
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led to leaps in accuracy—closing the gap between human
and machine performance to single-digit percentage points.1
However, due to increasing concern that large-capacity neu-
ral systems are modeling individual datasets, rather than
learning how to perform logical reasoning or to utilize exter-
nal knowledge effectively (Mitra et al. 2019), focus is shift-
ing to alternative training and evaluation strategies. In partic-
ular, zero-shot evaluation shows promise as an efficient mea-
sure of model generalisability across tasks (Shwartz et al.
2020; Li et al. 2020). Here, models are trained and validated
on task A, and tested on a different task B, without access to
B’s training data or labels. This leads state-of-the-art mod-
els from individual tasks to falter, sometimes by as much as
a 50% decrease in performance (Shwartz et al. 2020).

Repositories of commonsense knowledge, like
ConceptNet (Speer, Chin, and Havasi 2017) and
ATOMIC (Sap et al. 2019a), can be beneficial for common-
sense QA, especially when little or no training data is avail-
able. Enriching the training data with ConceptNet and
ATOMIC has been shown (Ma et al. 2019; Mitra et al. 2019)
to improve accuracy on datasets derived from these graphs:
CommonSenseQA (Talmor et al. 2019) and SocialIQA.
Knowledge bases (KBs) can be used to generate question-
answer pairs and distractors automatically, in order to test a
model’s reasoning ability (Petroni et al. 2019; Richardson
and Sabharwal 2019) or provide additional supervision (Ye
et al. 2019; Yang et al. 2020). While KBs have been shown
to help in a zero-shot transfer setting recently (Banerjee and
Baral 2020), no comprehensive study exists on the relation
between various knowledge, its usage method, and neural
models for zero-shot transfer across commonsense tasks.
Moreover, while adversarial filtering techniques (Bras et al.
2020) improve the quality of a manually created question
set, their impact on automatically generated questions from
a variety of KBs has not been investigated yet.

In this paper, (1) we compile a set of hypotheses and de-
sign a novel neuro-symbolic framework that investigates the
dependency between knowledge sources, question genera-
tion techniques, language model (LM) variants, and tasks.
Our framework leverages a wide range of KBs, covering
visual, social, and concept-based knowledge, to pre-train

1For example (accessed 4 August, 2020): https://leaderboard.
allenai.org/socialiqa/submissions/public



LMs for zero-shot evaluation on multiple-choice common-
sense QA tasks. (2) Recognizing that the aspect of question
generation is especially understudied, we expand on prior
work to devise and test four distractor-sampling strategies
for effective question generation. We analyze their impact
on model performance across tasks, conditioned on model
class and (pre-)training regime, and show that generating
questions that are simultaneously fair and informative is dif-
ficult but beneficial for LM pre-training. (3) We determine
which combination of knowledge graphs (KGs), data con-
struction/training, and architectures is most effective and can
utilize appropriately rich contexts across five tasks. We ob-
serve that diversifying knowledge generally improves per-
formance, under the condition of it being aligned with the
task, and that preserving the structure of the task is desired.
(4) We make our code and resulting datasets available to the
community to facilitate future research in this direction.2

Related Work
Knowledge Injection
Strong performance on standard multiple-choice QA bench-
marks, like SocialIQA and PhysicalIQA, has been
achieved by fine-tuning a task-specific prediction layer,
placed atop pre-trained LMs, such as BERT (Devlin et al.
2019), RoBERTa (Liu et al. 2019), and GPT (Radford et al.
2019). As shown by Ma et al. (2019) and Mitra et al.
(2019), combining neural methods with structured back-
ground knowledge from ConceptNet, WordNet (Miller
1995), and ATOMIC works well for commonsense datasets
that have been partially derived from these resources, such
as SocialIQA and CommonSenseQA. Here, the struc-
tured knowledge, formalized as lexicalized task-targeted ev-
idence paths, is injected into an LM, either via an attention
mechanism (Bauer, Wang, and Bansal 2018) or through an
auxiliary training objective (Xia, Wu, and Yan 2019). Graph
and relation networks can also be used to score answer can-
didates, by informing the graph structure with data from
LMs (Lin et al. 2019; Zhong et al. 2019). Finally, complete
KGs can be incorporated directly in training by introduc-
ing additional modeling objectives, to teach a model about
general commonsense regardless of the task at hand (Peters
et al. 2019; Levine et al. 2020; Liu et al. 2020; Zhang et al.
2019; Talmor et al. 2020). This line of work resembles our
approach of including background knowledge in a general,
task-agnostic way; however, it still relies on the task training
data and has generally not been tested in a zero-shot regime.

Generating Commonsense Questions and Answers
Richardson and Sabharwal (2019) use links in WordNet to
generate question-answer pairs, then leverage the resulting
dataset to evaluate language models. Petroni et al. (2019)
prompt the skills of language models by sentences instead of
questions, generated from sources like ConceptNet and
SQuAD (Rajpurkar et al. 2016). Previous works have gener-
ated synthetic QA sets to complement existing training data.
Ye et al. (2019) proposed an ‘align-mask-select’ method to

2https://github.com/Mayer123/HyKAS-CSKG

generate questions using ConceptNet and Wikipedia. Ko-
cijan et al. (2019) constructed a large set of pronoun res-
olution questions using Wikipedia sentences. Yang et al.
(2020) generate QA pair and distractors using generative
models. Regarding zero-shot evaluation, the Self-Talk model
of (Shwartz et al. 2020) generates clarification prompts
based on a template prefix, which are leveraged to elicit
knowledge from another LM, which is used jointly with the
original context and question to score each answer candi-
date. Given a task context, one can use COMET (Bosselut
and Choi 2019), a generative model trained on common-
sense KGs, to generate background knowledge statements,
and to compute scores for each answer candidate based on
the context, question, and generated knowledge. Banerjee
and Baral (2020) pre-train the LM with three representa-
tion learning functions which aim to complete a knowledge
triple given two of its elements. These functions jointly com-
pute the distance for each answer candidate. The ambition
of this paper is to provide a comprehensive framework for
such prior efforts on zero-shot QA with KGs. By covering a
wider set of KGs, question generation techniques, and tasks,
we can systematically investigate the effect of using differ-
ent KGs, generation methods, and techniques across tasks.

Zero-Shot QA Framework
Given a natural language questionQ, and n possible answers
A1, ..., An, the task is to select the most probable single an-
swer A. We refer to the remaining n − 1 possible answers:
D1, ..., Dn−1 as distractors. In a zero-shot QA evaluation
mode, the system has no access to the task training or de-
velopment data. We assume a setup where the system is pre-
trained once and then applied across different tasks in a zero-
shot manner. Our zero-shot evaluation framework addresses
this task by variants of pre-training an LM on an artificial
QA set, created from KG data. Next, we describe its covered
tasks, sources of knowledge, question generation strategies,
LM techniques, and training regimes, in turn.

Synthetic QA Generation
We generate questions, answers, and distractor op-
tions from five KGs: ATOMIC, ConceptNet,
WordNet, VisualGenome (Krishna et al. 2017), and
Wikidata (Vrandečić and Krötzsch 2014), found in the
Commonsense Knowledge Graph (CSKG) (Ilievski
et al. 2020). Notably, ATOMIC differs from the other KGs
in two ways: 1) its relations have a different focus than
those of the other sources; and 2) its node labels are longer
and formalized as templates. Due to these considerations,
we prepare two sets of QA sets: one based on ATOMIC and
one based on the remaining four knowledge sources. Figure
1 illustrates our question generation pipeline.

Data partitions ATOMIC expresses pre- and post-states
for events and their participants with nine relations. Its head
nodes are events, whereas the tail nodes are either events
or attributes. Its nodes have two particularities: 1) irrele-
vant parts of the node text are replaced with blanks (‘ ’);
and 2) references to fictional agents are indicated with spe-
cial tokens (e.g., PersonX). We follow the SocialIQA’s



Figure 1: An illustration of our question generation pipeline.

ATOMIC train/dev/test splits, to ensure that the facts of the
dev and test partitions are excluded in training.

Our second partition, CWWV, covers three other KGs in
CSKG that express commonsense facts between concepts:
ConceptNet, WordNet, and Wikidata. We use them
jointly to generate questions, and we enrich them with ad-
ditional distractors from VisualGenome. Treating these
four sources as a single one is enabled by their CSKG map-
ping to a single set of relations, defined by ConceptNet.
We focus on 14 semantic relations that are grounded on
strong psycholinguistic and pragmatic evidence (Murphy
2003), like /r/Causes and /r/HasPrerequisite.
Since there is no pre-defined train/dev/test split for CSKG,
we randomly sample 5% of generated questions as devel-
opment set, while the other 95% are used for training, to
maximize the coverage of the knowledge.

Generating questions and answers If a triple (h, r, t) has
an associated sentence, we directly employ it for question
generation; otherwise, we generate a sentence in a lexical-
ization step, using a set of pre-defined templates. Next, we
generate the questionQ by removing the tail of the sentence,
and extract this tail as the correct answer, A. Here, we en-
sure that there is no token overlap between the head and the
correct answer. For ATOMIC, we: 1) compare the keyword
tokens instead of all tokens, in order to avoid stopwords; and
2) the agent templates (e.g., ‘PersonX’) are replaced with
randomly sampled gender-neutral names from a pre-defined
set. For CWWV, we filter out questions where either the head
or the tail are not common concepts or they are named enti-
ties. We use corpus frequency as a proxy for commonness,3
while named entities are filtered by removing all concepts
whose labels start with a capital letter.

Generating negative samples (distractors) We seek to
generate distractor options that satisfy two criteria: infor-
mativeness and fairness. Namely, a good distractor has se-
mantic relatedness with the context (informative), while be-
ing relatively easy to discriminate from the correct answer
(fair). We create the pool of distractors D for every sam-
ple as follows: 1. The distractor candidates are the tails of
knowledge triples (h′, r′, t′) with the same relation r′ = r,
randomly sampled from the KGs. This would ensure that the
distractors can fill the same semantic role as the correct an-
swer. 2. The head h′ of the sampled triples does not have

3https://pypi.org/project/wordfreq/ (Accessed 9 Sept. 2020)

Table 1: Generated questions from ATOMIC (top) and CWWV
(bottom). (*) denotes the correct answer.

Question: Robin takes the fifth. As a result, Robin wanted to
A1: go to the cinema.
A2: withhold information. (*)
A3: hear what they think.

Question: losing weight is for
A1: being healthier. (*)
A2: embedded software.
A3: buying things in store.

non-stop word overlap with h. 3. The distractor tail t′ is not
part of the correct answer set, i.e., there exist no triples, (h,
r, t′). Considering the example in Figure 1, the triple (gain-
ing weight, CausesDesire, change appearance) will be fil-
tered out by rule (1), (losing weight, UsedFor, feeling better)
will be ruled out by both (2) and (3), and (relaxing, Used-
For, feeling better) will be ruled out by (3). Here, we replace
any references to fictional ATOMIC agents in the distractors
with the same names used in the question. We then randomly
select two distractors (D1, D2) from D. We refer to this dis-
tractor pooling strategy as random, and propose three alter-
native strategies in the next Section.

Example questions with each partition are shown in Ta-
ble 1. For ATOMIC, this procedure generates 535K QA pairs
for training and 60K for development. For CWWV, the train-
ing set contains 157K and the dev set has 8K QA pairs.

Distractor Sampling
Existing data generation procedures are likely to introduce
annotation artifacts in datasets (Zellers et al. 2019; Sak-
aguchi et al. 2019). Models may exploit these artifacts to
achieve spuriously strong performance during training, at
the expense of degradation in robustness. To generate more
challenging QA pairs from KGs and to alleviate potential
biases in our synthetic sets, we test two other distractor sam-
pling strategies in addition to the random strategy: 1) we
select distractors that are as similar as possible to the an-
swer, while being under a certain threshold (adv-answer);
and 2) we select distractors that are as similar as possible
to the question, while being under a certain threshold (adv-
question). Here we define similarity of two nodes to be their
proximity in the embedding space, measured by cosine sim-
ilarity. The intuition is that, by generating more challenging
QA pairs for the models, we could achieve better general-
ization across tasks. We use the RoBERTa sentence embed-
ding model (Reimers and Gurevych 2020) to compute em-
beddings for all KG nodes. For these two strategies, we set
an upper bound on the similarity score to avoid unfair dis-
tractors, i.e., paraphrases of the correct answer. Based on
manual observations, we set their distractor similarity upper
bound to be 0.6 for CWWV and 0.4 for ATOMIC.

Sample filtering Besides these distractor sampling strate-
gies, we test another condition (3), where we select the dis-
tractors randomly, but only keep the questions whose dis-
tractors are sufficiently challenging at training time (adv-



filter). The intuition is that QA pairs generated using the
aforementioned methods might still be too easy for the mod-
els, thus we would like to only keep the most challenging
subset to train our models. We employ the AFLite algorithm
(Sakaguchi et al. 2019) for our purpose. Given a train and
dev split of our synthetic QA set, we use 5% of the train set
to finetune a RoBERTa model with a classification head (4%
training, 1% validation). These 5% are discarded from train
after this step. We then compute the fixed embeddings for
the remaining 95% of train and the entire dev, denoted as Trn
and Dev. Next, we feed Trn and Dev along with their labels
to the AFLite algorithm, which iteratively filters out easy
examples using an ensemble of linear classifiers. Finally, we
retain (101K training, 11K dev) samples for ATOMIC and
(29K training, 1.5K dev) samples for CWWV subset. The de-
tails of AFLite can be found in the appendix.

Language Models
We consider 2 types of language models: auto-regressive
language models and masked language models (MLM).
Specifically, we use GPT-2 and RoBERTa to select the best
answer candidate. Given a context C, a question Q, and a
list of answer options (A1, A2...), we concatenate C and Q
with each answer option to build input sequences (T1, T2...).
We also use templates to convert a sequence T into a natu-
ral language sentence following (Shwartz et al. 2020). For
example, we transform the sequence: [C] What will X want
to do next? [Ai] into: [C], as a result, X want to [Ai]. The
score S for the resulting sequence using an auto-regressive
LM is computed as follows:

SLM (T ) = − 1

n

n∑
i=1

logP (ti | t1 . . . ti−1) (1)

where n is the number of tokens in the sequence and P is
the conditional probability provided by the LM. To evalu-
ate MLMs, we mask out one token at a time and compute
its loss (Zhou et al. 2020). We repeat this process for every
token in the sequence. The final MLM score is:

SMLM (T ) = − 1

n

n∑
i=1

logP (ti | . . . ti−1, tt+1 . . .) (2)

The predicted option is the one with the lowest score.

LM Finetuning In the typical model architecture for fine-
tuning LM for multiple-choice tasks, a linear layer is added
on top of the LM encoder to predict the answer. The model
inputs are separated by a model-specific delimiter. How-
ever, as this architecture introduces randomly initialized pa-
rameters, it may not be able to fully utilize the pre-trained
weights (Tamborrino et al. 2020). Instead, we re-use the
GPT-2 and RoBERTa with LM head for finetuning. By keep-
ing the model intact, we can reuse the same converting tem-
plates and scoring functions. To train the model, given the
scores computed for each answer candidate S1, S2, ...Sm,
we use the marginal ranking (MR) loss defined as:

L =
1

m

m∑
i=1
i6=y

max (0, η − Sy + Si) (3)

Here, η represents the margin and y is the index of the cor-
rect answer. For a MLM model, the computation cost for the
scoring function scales quadratically with the input length.
To make the training more efficient, we only mask out non-
stop tokens in the head and tail nodes.

Training Regimes In order to disentangle the contribution
of the KGs from the structure of the QA pairs, we consider
different training methods for augmentation of language
models with KGs. Specifically, we compare marginal rank-
ing (MR) training with masked language modeling (MLM)
training. For MLM, we directly concatenate the question and
the correct answer in our synthetic QA set and then train
RoBERTa on the these sentences using the MLM objective.

Tasks
We select commonsense tasks based on two criteria. Firstly,
we strive to cover a diverse set of tasks, both in terms of their
format (question answering, pronoun resolution, natural lan-
guage inference), as well as their type of knowledge (e.g.,
social or physical knowledge). Secondly, we prefer larger
task datasets that are manually constructed. For this reason,
we do not include datasets like COPA (Gordon, Kozareva,
and Roemmele 2012), or HellaSwag (Zellers et al. 2019).
We opt for the following five task datasets:

1. Abductive NLI (aNLI) (Bhagavatula et al. 2019) is
posed as a natural language inference task. Given the begin-
ning and the ending of a story, the task is to choose the more
plausible hypothesis out of two options. The dataset consists
of nearly 170k entries.

2. CommonsenseQA (CSQA) (Talmor et al. 2019) eval-
uates a broad range of common sense aspects. Each entry
contains a question and 5 answer candidates. The questions
are crowdsourced based on a subgraph from ConceptNet.
The answer candidates combine ConceptNet nodes with
additional crowdsourced distractors.

3. PhysicalIQA (PIQA) (Bisk et al. 2020) is a two-choice
question answering dataset which focuses on physical rea-
soning. Given a question, the system (or human) is asked to
pick the more plausible out of two possible continuations.

4. SocialIQA (SIQA) (Sap et al. 2019b) is a question-
answering dataset which requires reasoning about social in-
teractions. Each entry contains a context, a question, and 3
answer candidates. The context is derived from the ATOMIC
knowledge graph, the questions are generated based on nine
templates (corresponding to the relations in ATOMIC), and
the answers are crowdsourced.

5. WinoGrande (WG) (Sakaguchi et al. 2019) contains
44 thousand pronoun resolution problems. Each entry con-
sists of a context description with an emphasized pronoun,
and two options are offered as its possible references.

Experimental Setup
Baselines
We compare our results with the following baselines. Ma-
jority answers each question with the most frequent op-
tion in the entire dataset. ‘Vanilla’ versions of the language



Table 2: Zero-shot evaluation results with different combinations of models and knowledge sources, across five commonsense
tasks. CSKG represent the combination of ATOMIC and CWWV. We run our experiments three times with different seeds and
report average accuracy with 95% confidence interval. SMLM (*) used OMCS for CSQA, ROCStories (Mostafazadeh et al.
2016) for aNLI and ATOMIC for SIQA as knowledge resources.

Model KG aNLI CSQA PIQA SIQA WG
Majority - 50.8 20.9 50.5 33.6 50.4
GPT2-L - 56.5 41.4 68.9 44.6 53.2
RoBERTa-L - 65.5 45.0 67.6 47.3 57.5
Self-talk (Shwartz et al. 2020) - - 32.4 70.2 46.2 54.7
COMET-DynaGen (Bosselut and Choi 2019) ATOMIC - - - 50.1 -
SMLM (Banerjee and Baral 2020) * 65.3 38.8 - 48.5 -

GPT2-L (MR) ATOMIC 59.2(±0.3) 48.0(±0.9) 67.5(±0.7) 53.5(±0.4) 54.7(±0.6)
GPT2-L (MR) CWWV 58.3(±0.4) 46.2(±1.0) 68.6(±0.7) 48.0(±0.7) 52.8(±0.9)
GPT2-L (MR) CSKG 59.0(±0.5) 48.6(±1.0) 68.6(±0.9) 53.3(±0.5) 54.1(±0.5)
RoBERTa-L (MR) ATOMIC 70.8(±1.2) 64.2(±0.7) 72.1(±0.5) 63.1(±1.5) 59.6(±0.3)
RoBERTa-L (MR) CWWV 70.0(±0.3) 67.9(±0.8) 72.0(±0.7) 54.8(±1.2) 59.4(±0.5)
RoBERTa-L (MR) CSKG 70.5(±0.2) 67.4(±0.8) 72.4(±0.4) 63.2(±0.7) 60.9(±0.8)
RoBERTa-L (supervised) - 85.6 78.5 79.2 76.6 79.3

Human - 91.4 88.9 94.9 86.9 94.1

models are used in order to understand the impact of fur-
ther tuning. Here we directly uses the LMs to score the
QA pairs without any finetuning. We also show the results
of other unsupervised systems that leverage KGs: Self-talk,
COMET-DynaGen, and SMLM. To indicate the upper bound
of this work, we include results of a supervised fine-tuned
RoBERTa system and of human evaluation.

Implementation
For the LM baselines, we directly load the weights from the
Transformers library (Wolf et al. 2019) and evaluate on the
downstream tasks. The finetuned LMs are trained for a sin-
gle epoch on our synthetic QA set. For Adv-filter, we train
the models for 5 epochs to compensate for less training data.
We use our synthetic dev set to select the best model. We
describe other hyper-parameters used and computing infras-
tructure in the appendix.

Hypotheses
Based on individual prior findings and understanding of dif-
ferent components of our framework, we put forward a set
of hypotheses which will be validated in our experiments:

H1 RoBERTa would have better performance than GPT-2.
This is in line with prior findings that RoBERTa has the
advantage of bi-directional context (Zhou et al. 2020).

H2 Pre-training a language model with artificially created
question-answer sets enhances zero-shot performance.
This is also supported in previous study about unsuper-
vised QA (Li et al. 2020)

H3 The impact of more knowledge depends on the alignment
between KGs and the task, partial evidence for which is
provided by (Ma et al. 2019; Mitra et al. 2019).

H4 Adding diverse knowledge (from different KGs) improves
performance. This is the initial motivation behind the cre-
ation of CSKG (Ilievski et al. 2020), but has not been in-
vestigated in detail.

H5 When selecting negative samples for a question, it helps
to use an adversarial strategy that ensures the question is
not trivial for a language model. H5 is inspired by adver-
sarial filtering, which has not been investigated in detail
for automatically-generated questions and across KGs.

H6 Preserving the task structure when generating synthetic
data leads to better accuracy. This is implicitly assumed
in prior data augmentation work (Kocijan et al. 2019).

H7 The automatically created questions are notably easier
for humans than they are for machines - a general assump-
tion made by commonsense task creators and typically
correct for any existing, human-generated benchmark.

Results
We evaluate various combinations of: knowledge sources,
question generation strategies, LMs, training regimes, and
tasks. We use accuracy as a metric. All our experiments
are performed in a zero-shot setting, i.e., the models do not
leverage the official training data of the task. We report re-
sults on the dev sets of these tasks, as the official test sets
are not publicly available. We note that, since we did not use
the tasks’ dev sets for hyperparameter tuning or checkpoint
selection, the dev sets can be used effectively as test sets.

Main Results
Table 2 shows that GPT-2 and RoBERTa outperform the ma-
jority baseline by a large margin on all tasks, indicating that
the LMs have already learned relevant knowledge during



Table 3: Comparison of different QA generation strategies.

RoBERTa-L Strategy aNLI CSQA PIQA SIQA WG
+ATOMIC Random 70.8(±1.2) 64.2(±0.7) 72.1(±0.5) 63.1(±1.5) 59.6(±0.3)
+ATOMIC Adv-answer 70.4(±0.8) 62.3(±0.9) 72.6(±1.8) 61.6(±0.3) 60.5(±0.5)
+ATOMIC Adv-question 70.8(±0.6) 55.6(±0.9) 70.6(±0.8) 51.6(±0.8) 58.5(±0.3)
+ATOMIC Adv-filter 68.6(±1.8) 46.4(±1.5) 67.9(±1.1) 51.8(±1.2) 60.8(±0.6)
+CWWV Random 70.0(±0.3) 67.9(±0.8) 72.0(±0.7) 54.8(±1.2) 59.4(±0.5)
+CWWV Adv-answer 69.5(±1.1) 68.5(±0.8) 72.7(±0.3) 53.8(±0.6) 60.7(±0.7)
+CWWV Adv-question 68.3(±2.3) 60.9(±2.3) 69.6(±0.6) 47.0(±2.0) 59.0(±1.4)
+CWWV Adv-filter 69.7(±0.7) 64.7(±2.3) 72.0(±1.3) 50.1(±1.0) 59.4(±1.4)

pretraining. Despite being a smaller model, RoBERTa out-
performs GPT-2 on 4 out of 5 tasks without pretraining, and
on all tasks when pretraining over different synthetic QA
sets. This shows the advantage of leveraging bi-directional
context, and confirms our hypothesis H1. As expected (H2),
training RoBERTa on our ATOMIC or CWWV synthetic sets
brings notable performance gain on all 5 tasks. We observe
that models trained on ATOMIC sets have a large advantage
on SIQA compare to models trained on CWWV, while CWWV
brings advantage on the CSQA task. This is not surpris-
ing as these two tasks are derived from ConceptNet and
ATOMIC, respectively. The difference between ATOMIC and
CWWV on the remaining three tasks is relatively small. This
supports our hypothesis H3: knowledge alignment is crucial
for obtaining better performance.

Training on the combined question set (CSKG) is mostly
able to retain the best of its both partitions. Training on
CSKG leads to best performance on three out of five tasks,
showing that a global commonsense resource is able to bring
consistent gain across different tasks. This supports our hy-
pothesis H4: adding more diverse knowledge is beneficial
for language models. Finally, even with this knowledge, we
recognize that there is still a large gap between our model’s
accuracy and that of the supervised RoBERTa model.

Comparison of QA Generation Strategies

Table 3 shows the results with different sampling strategies,
thus addressing H5. The best performing adversarial algo-
rithm, Adv-answer, yields comparable accuracy to the ran-
dom strategy, revealing that distractors sampled with a more
sophisticated strategy are not necessarily more informative
for the LMs. Adv-question and Adv-filter typically lead to
declines in accuracy. Considering Adv-question, this could
be due to the similarity of the distractors to the question,
which might guide the model to learn to pick the most dis-
similar candidate as the correct answer, which is an artifact
of our question generation and cannot be expected to work
well for downstream tasks. Our manual inspection of the re-
maining questions prefered by Adv-filter indicates that many
questions are unfair, as some distractors are also correct an-
swers, which is a consequence of the incompleteness of the
KGs. Adv-filter prioritizes these questions as they are “dif-
ficult” for LMs, however, training on them might teach the
LM incorrect knowledge and harm downstream accuracy.

Comparison of Training Regimes
Table 4 presents results with two different training regimes.
In comparison to the baseline without additional training,
MLM training on ATOMIC only improves on the SIQA task,
and harms on the rest. With CWWV, it brings large gain on
CSQA and small improvements on SIQA and WG. At the
same time, marginal ranking training on either question set
consistently outperforms MLM training by a large margin,
suggesting that preserving the task structure is beneficial in
addition to the question content and validating H6.

Difficulty of the Synthetic QA Sets
Ideally, the generated question-answer pairs should be chal-
lenging for the models but easy for humans to solve (H7).
Here, we probe this hypothesis by assessing the difficulty of
our synthetic QA sets both by humans and ‘vanilla’ LMs.
We evaluated both models on the dev sets of our synthetic
data. For human evaluation, we randomly sample 50 ques-
tions from ATOMIC and 50 questions from CWWV. A total of
five researchers were asked to first provide the correct an-
swer, then rate the question difficulty. For the latter, the an-
notator chose between easy, moderate, hard, or non-sensical
- as a guideline, nonsensical questions have unfair distrac-
tors and cannot be easily understood. Following this proce-
dure, we obtained three judgments for each question.

The inter-annotator agreement on selecting the correct an-
swer is 0.62 using Fleiss Kappa score, which is substan-
tial agreement. The Kripendorf alpha (Krippendorff 2004)
for rating question difficulty is 0.35, which is fair agree-
ment. The results of the baseline LMs and human perfor-
mance (Table 5) show that the ATOMIC subset presents a
harder challenge for both models, as well as for humans.
Overall, the results support our hypothesis H7: the synthetic
questions are relatively easy for humans to solve and much
harder for models. However, the annotation pointed to sev-
eral directions for improving the synthetic QA sets. A num-
ber of questions generated from ATOMIC are ungrammat-
ical, which makes them harder to understand, while some
questions from CWWV were rated as unfair. For example, all
answer options for the question A person can are valid: (a)
cost several thousand dollars (b) expressing boredom (c)
check snow level. As discussed earlier, this is due to the
incompleteness of our KGs, and the current lack of under-
standing on how to generate fair, yet informative, distractors.



Table 4: Comparison between MLM and MR training.

RoBERTa-L Train aNLI CSQA PIQA SIQA WG

baseline - 65.5 45.0 67.6 47.3 57.5
+ ATOMIC MLM 62.9 43.8 65.8 53.9 55.5
+ ATOMIC MR 70.8 64.2 72.1 63.1 59.6
+ CWWV MLM 65.3 57.3 67.2 49.3 59.4
+ CWWV MR 70.0 67.9 72.0 54.8 59.4

Discussion
Towards a Commonsense Service
The overarching pursuit of this paper is to understand
whether generating artificial QA sets with KGs improves the
zero-shot QA performance of LMs. We observe a consistent
leap in accuracy across tasks, LMs, knowledge sources, and
question generation strategies. While these accuracies are
notably below supervised LM accuracies, they might further
improve by architectural improvements of the LMs, knowl-
edge sources with wider coverage and stronger semantics,
and well-tuned scoring functions.4 In addition, despite its
complexity and diversity, commonsense knowledge (unlike
knowledge on entities and events, which changes rapidly) is
largely static and evolves slowly over time, thus making the
dataset-specific finetuning unnecessary in theory. A natural
question arises: can we build a sufficiently reliable, general
commonsense service, by pretraining a LM on a rich set of
questions covering a wide spectrum of knowledge types?

Impact of Knowledge
In general, we observed that using knowledge from a
wider set of sources is beneficial. However, on aNLI and
CommonSenseQA, the best accuracy was obtained with
a subset of all questions. This could be due to the
kinds of knowledge covered: 1. aNLI focuses on ex-
pectations of agents and events, for which ATOMIC is
directly useful, whereas the other KGs might be delu-
sive; 2. CommonSenseQA mostly requires knowledge
about properties of objects (e.g., function or appearance)
which is the focus of ConceptNet, Wikidata, and
VisualGenome, but not of ATOMIC. This indicates a ten-
sion between H3 and H4: while more knowledge often helps,
it might not be the case when the task and the knowledge are
not well-aligned. Our current understanding of the dimen-
sions of commonsense knowledge in knowledge sources and
benchmarks is limited, and would benefit from further study.

Generating Fair and Informative Questions
Alternatively, this result may be explained by our human
evaluation: not all automatically generated questions are fair
and a subset has more than one correct answer, as a direct
consequence of the inherent incompleteness of KGs. Be-
sides being a disadvantage of automatic question generation,

4For example, scoring sequences of tokens by a language model
might improve the performance of LMs (Tamborrino et al. 2020).

Table 5: LM and human accuracy on our synthetic QA sets.

Model ATOMIC CWWV

GPT2-L 43.2 69.5
RoBERTa-L 45.9 64.5
Human 78.0 80.7

this finding points to a more substantial challenge: generat-
ing fair and informative multiple-choice questions is not yet
well-understood. Adversarial strategies yield more plausi-
ble candidates than random sampling, making the task less
fair; yet, fully relying on random sampling would generate
distractors that are trivially discernible from the correct op-
tion. Balancing between fairness and informativeness, thus,
is essential for multiple-choice question generation. Our em-
pirical evidence suggests that it could be achieved by a
mixed approach, where part of distractors is generated ran-
domly, and part by adopting suitable adversarial strategies.5

Conclusions
While zero-shot QA is gaining focus, no study so far has in-
vestigated systematically the dependency between the task,
the technique, and any additional knowledge used. To ad-
dress this gap, this paper proposed a framework for zero-
shot QA by pretraining LMs on artificial data created based
on KGs. We studied the interplay between five knowledge
sources, four data generation strategies, two LMs, two train-
ing regimes, and five tasks. We put forward seven hypothe-
ses, which guided our experiments. We observed that lan-
guage models benefit from pretraining on artificially created
QA sets. Similar to prior work, we observed that the best per-
formance is obtained by the RoBERTa model. Furthermore,
combining knowledge sources leads to best performance, in-
dicating that diverse relevant knowledge is desired for pre-
training. However, this is conditioned on a good alignment
between knowledge and the task. The training regime had
a role too: marginal ranking is superior to vanilla language
modeling, as it preserved better the structure of the task. Our
analysis and human evaluation indicated that the generated
questions were typically easier for humans than for language
models, which is appropriate for commonsense questions.

Yet, the human evaluation revealed that a notable portion
of the questions is nonsensical or difficult, hinting that au-
tomatically generating high-quality, informative common-
sense questions is non-trivial and should be revised in sub-
sequent work. Future work should also investigate the im-
pact of this approach on knowledge injection systems (Ma
et al. 2019) and graph relational networks (Lin et al. 2019).
It should also consider: (1) other, less structured knowl-
edge sources, like WikiHow; (2) different distractor sam-
pling strategies, e.g., based on iterative sampling (Niu et al.
2020); and (3) additional LM scoring functions, e.g., based
on scoring sequences of tokens (Tamborrino et al. 2020).

5Question formulation is another challenge. Template-based
questions may be trivially easy for LMs to solve, as discussed in
https://cs.nyu.edu/faculty/davise/papers/CYCQns.html.
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Hyperparameters
Model training
In all experiments that involve training, we used learning
rate 1e−5, batch size 32, max sequence length 128, weight
decay 0.01, adam epsilon 1e−6, β1 = 0.9, β2 = 0.98 and
warm-up proportion 0.05, margin 1.0. For MLM training
with RoBERTa, We only mask non-stop words in head or
tail and we set the masking probability as 0.5 for ATOMIC
and 0.3 for CWWV.

Tuned parameters
We also tested smaller margins for training (0.2, 0.5) and we
observe that margin 1.0 works slightly better.

AFLite In our experiments, we set N=64, τ=0.75, k1=1/50
of |Trn|, k2=1/50 of |Dev| and O = 1/5 of |Trn|.

AFLite algorithm

Algorithm 1: AFLite
Input: Trn, Dev, ensemble size N, cutoff sizes

k1,k2, threshold τ , target size O
while |Trn| > O do

for s in Trn+Dev do
Initialize Prediction P(s) = ∅

end
for i=1, ... N do

Random Partition Trn into U , V s.t |U | = O
Train a linear classifier F on U
for s in V+Dev do

Add F(s) in P(s)
end

end
for s in Trn+Dev do

Acc(s) = |p∈P (s)s.t.p=y|
|P (s)|

end
Select top-k1 samples S1 in Trn s.t. Acc(s) > τ
Select top-k2 samples S2 in Dev s.t. Acc(s) > τ
Trn = Trn - S1

Dev = Dev - S2

if |S1| < k1 then break;
end
Output: filtered sets Trn′ and Dev′

Computing resources
We run our experiments on servers with Intel(R) Core(TM)
i7-7820X CPU @ 3.60GHz (1 CPU, 8 physical cores per
CPU, total 16 logical CPU units) and with 125GB RAM. For
GPUs, We used Nvidia RTX 2080Ti and Nvidia Titan RTX.
For libraries, we used Pytorch 1.2.0, transformers 3.0.2 and
sentence-transformer 0.3.4.


